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Abstract
Evolving systems unfolds from the interaction and cooperation between systems with adaptive structures, and recursive 
methods of machine learning. They construct models and derive decision patterns from stream data produced by dynamically 
changing environments. Different components that assemble the system structure can be chosen, being rules, trees, neurons, 
and nodes of graphs amongst the most prominent. Evolving systems relate mainly with time-varying environments, and 
processing of nonstationary data using computationally efficient recursive algorithms. They are particularly appropriate for 
online, real-time applications, and dynamically changing situations or operating conditions. This paper gives an overview 
of evolving systems with focus on system components, learning algorithms, and application examples. The purpose is to 
introduce the main ideas and some state-of-the-art methods of the area as well as to guide the reader to the essential literature, 
main methodological frameworks, and their foundations.

Keywords  Evolving intelligence · Fuzzy systems · Neural networks · Incremental machine learning · Online data stream · 
Adaptive systems

1  Introduction

The operation of evolving systems results from online 
sequential data processing to learn the nature of local sub-
systems and their interactions to endure self-organization 
of the system structure and parameters. The system should 
develop and update itself to unknown environments, and 
detect potential temporal shifts and drifts in input data. 
Applications are numerous especially in modeling and iden-
tification, control, prediction, clustering and classification, 
fault diagnosis, anomaly detection, frequent pattern mining, 
and recognition.

Processing and modeling nonstationary stream data bring 
unique issues and challenges in online machine intelligence. 
For example, machines in industry and mobile robots suffer 
from stress, aging, and faults; economic indicators, such as 
stock indices, vary at a high speed; communication systems 
transmission capacity and responsiveness are subject to con-
tinuous changes; users behavior in a social network change 
over time. Computational models should be supplied with 
incremental learning algorithms to be able to evolve and deal 
with such changes. Evolution provides a system with flex-
ibility to improve its short-term performance, and increases 
its chance to survive in the long-term despite of changes in 
the environment and in its components. While small changes 
in system parameters can be handled as a form of uncer-
tainty, and be properly addressed by using parameter estima-
tion mechanisms, changes in the system structure requires a 
higher level of adaptation and autonomy.

Prior studies on evolving systems were mainly con-
cerned with neural networks (Fritzke 1994; Williamson 
1996), fuzzy rule-based systems (Angelov and Filev 2004; 
Lughofer 2008) (evolving fuzzy systems), and neural-fuzzy 
hybrids (Kasabov and Song 2002). The structure of rule-
based systems is identified by the nature and number of 
rules. For instance, evolving fuzzy rule-based systems may 
use linguistic fuzzy rules, functional fuzzy rules, or their 
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combination (Leite 2012). The structure of neuro-fuzzy 
systems is, in turn, recognized by the nature of the neurons 
and their connections. Important milestones in the history of 
evolving systems include the publication of the monographs 
Evolving Connectionist Systems (Kasabov 2007), Evolving 
Intelligent Systems (Angelov et al. 2010), and Evolving 
Fuzzy Systems: Methodologies, Advanced Concepts and 
Applications (Lughofer 2011). The journal entitled Evolv-
ing Systems by Springer started in 2010. A recent survey 
article on evolving fuzzy and neuro-fuzzy methods for clus-
tering, regression, identification, and classification is found 
in Škrjanc et al. (2019).

Recently, advances and generalizations of the pioneering 
studies are found in the realm of statistical models (Agrawal 
and Bala 2008; Hisada et al. 2010; Škrjanc 2009; Dovžan 
and Škrjanc 2011) granular computing (Leite et al. 2012, 
2013, 2015, 2019), deep learning (Pratama and Wang 2019; 
Prasad et al. 2018), regression trees (Hapfelmeier et al. 2014; 
Lemos et al. 2011a), support vector machines (Bordes and 
Bottou 2005), type-2 fuzzy systems (Tung et al. 2013; Za’in 
et al. 2017; Pratama et al. 2016), interval mathematics (Leite 
et al. 2012, 2010), spiking neural networks (Doborjeh et al. 
2018), and ensemble learning (Leite and Škrjanc 2019; 
Heeswijk et al. 2009; Lughofer and Buchtala 2013; Iglesias 
et al. 2014; Pratama et al. 2018; Soares et al. 2018). Fig-
ure 1 shows the essential categories of evolving approaches 
that have been developed. Applications in intelligent sen-
sors and actuators (Angelov and Kordon 2010; Angelov 
et al. 2008), autonomous unmanned systems (Yourdshahi 
et al. 2018; Angelov et al. 2008; Klančar and Škrjanc 2015), 
industrial process monitoring (Filev and Tseng 2006; Wang 
and Vrbanek 2008; Lughofer 2008; Lemos et al. 2010), bio-
medical data processing (Kasabov 2007; Leite et al. 2013), 
(Škrjanc 2015), cyber security (Škrjanc et al. 2018), real-
time financial analysis (Maciel et al. 2018, 2017), weather 
forecasting (Soares et al. 2018; Leite et al. 2012), smart 

grids (Silva et al. 2018, 2018), web news mining (Za’in et al. 
2017), tracking of chaotic systems (Leite et al. 2016) and the 
Katrina, Sandy and Wilma cyclones (Soares et al. 2018), 
analysis of electro-oculography and encephalography signals 
(Rubio and Bouchachia 2017; Doborjeh et al. 2018; Rubio 
2014), seismocardiogram-based monitoring during physi-
cal activities (Malcangi et al. 2018), online identification of 
quadcopter hovering dynamics (Ferdaus et al. 2019), missing 
data imputation (Garcia et al. 2019), finger dynamics mod-
eling (Precup et al. 2018), recognition of drivers’ actions 
(Škrjanc et al. 2018); in general control problems (Ando-
novski et al. 2016; Zdešar et al. 2014; Blažič et al. 2014), 
and in many other areas have been reported. Model-based 
evolving control design and closed-loop Lyapunov stabil-
ity are achieved in Leite et al. (2015). Evolving audiovisual 
speech recognition is reported in Malcangi and Grew (2017).

Nonstationary data-stream processing poses questions 
that are not easily answered by many of the current com-
monly-used computational intelligence and machine learn-
ing methods because the latter require an offline batch-learn-
ing stage. This is because data streams are characterized by 
the following aspects: (i) samples in a stream arrive continu-
ously; (ii) the system has no control over the order in which 
data samples arrive; (iii) streams are typically unbounded, 
and samples are sequentially recorded as long as the system 
operates; and (iv) a sample should ideally be discarded after 
being processed to avoid scalability issues. Ideally, com-
putational models should be promptly updated to changing 
situations occurring over the life-time of a stream.

The effect of concept drift and shift in models and learn-
ing algorithms may be enormous. While the impact of con-
cept drift can be suppressed using, e.g., model parameter 
adaptation procedures, concept shift may require searching 
in a hypothesis space. The key difference of evolving sys-
tems to online incremental machine learning is the ability 
of the former to simultaneously manage different kinds of 

Fig. 1   Categories of evolving 
systems
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changes (drift, shift, non-stationary behavior, environmental 
changes, etc.) by relying on parameter and structural updat-
ing procedures that scan a data sample only once (single-
pass incremental learning). Contrariwise, typically, only 
parameters are updated in ‘incremental machine learning’; 
that is, no intrinsic structural change of the model is carried 
out. Therefore, the term “evolving” means systems that are 
able to simultaneously learn and adapt their structure and 
parameters endlessly (Angelov and Zhou 2006). We also 
contrast the term “evolving” with the term “evolutionary”, 
as used in genetic algorithms and genetic programming. 
Evolutionary processes proceed with populations of indi-
viduals using recombination, mutation, and selection mech-
anisms during generations (usually in a static and offline 
optimization context). “Adaptive” systems in the control 
and dynamical systems theory deal predominantly with 
parameter estimation, and, therefore, are also different than 
evolving systems. Evolving systems and models advance 
autonomously over time during the life span of the system.

2 � Fuzzy rule‑based and neuro‑fuzzy 
evolving systems

The issue of adapting models’ structure and parameters 
automatically dates from the early 90’s, especially for neu-
ral networks (Fritzke 1994; Williamson 1996; Kwok and 
Yeung 1997). Rule-based evolving systems have advantages 
over evolving black-box models, such as neural networks, 
because they are more transparent and linguistically explain-
able (Angelov 2010). The demand of knowledge from data 
often entails interpretability of models. Rule-based mod-
els—a class of models in which evolving fuzzy, interval, 

and granular-computing systems belong to—typically offer 
better interpretable insights in a given application domain 
compared to pure neural network or deep learning modeling 
approaches.

There are several studies in the literature proposing 
evolving fuzzy models capable of addressing problems like 
system identification, time series forecasting, pattern clas-
sification, process control, and so on. Many of these stud-
ies propose functional fuzzy models, e.g., (Angelov 2002; 
Angelov and Filev 2004; Lughofer 2008; Lima et al. 2010), 
which are based on a set of algebraic Takagi-Sugeno rules 
(Takagi and Sugeno 1985). Some studies propose combining 
Takagi-Sugeno and Mamdani consequent terms, e.g., (Leite 
et al. 2012, 2019, 2013), to give numerical estimations and 
an enclosure around them, which is sometimes called “gran-
ular” estimation, and may come associated with a linguistic 
value that adds interpretability to the model. Evolving fuzzy 
rule-based models employ unsupervised recursive clustering 
algorithms to update the antecedent part of some of their 
rules whenever new data arise. However, creating a new 
rule is always a possibility in case a data sample conveys 
significantly different information. Figure 2 shows the idea 
of structural and parametric adaptation in evolving systems 
in general. In particular, evolving fuzzy rule-based systems 
are evolving systems in which system components are fuzzy 
rules. For functional fuzzy rules, consequent parameters are 
found using recursive least-squares algorithms or variations 
(Ljung 1999).

One of the firsts evolving modeling framework is called 
evolving Takagi-Sugeno (Angelov and Filev 2004). This is a 
functional fuzzy rule-based model whose structure is contin-
uously adapted using recursive clustering, and recursive least 
squares. The idea is to assign to each cluster a local fuzzy 

Fig. 2   Evolving systems
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functional model. The collection of fuzzy rules, and their 
corresponding parameters, assemble the overall model. Many 
similar approaches can be found in the literature, e.g., (Lug-
hofer 2008; Lima et al. 2010; Klančar and Škrjanc 2015). 
They differ mostly in the way that recursive clustering is per-
formed. An example is the use of the participatory learning 
paradigm for recursive clustering (Lima et al. 2010). A mul-
tivariable evolving approach using the participatory learning 
approach was developed in Lemos et al. (2011b) to account 
for interactions among attributes, and to attenuate the curse 
of dimensionality during clustering. In Škrjanc and Dovžan 
(2015), the evolution of possibilistic Gustafson-Kessel hyper-
ellipsoids were proposed with the purpose of capturing the 
covariance among attributes in an incremental basis. In Leite 
et al. (2019), a multi-objective function is used to guide the 
placement of granules in the data space, and simultaneously 
to maximize the specificity and coverage of local models. 
Evolving fuzzy regression trees are given in Lemos et al. 
(2011a). A tree uses an affine function on each leaf, whose 
parameters are adapted using the conventional least-squares 
algorithm. The tree structure is updated using a statistical 
selection procedure based on a hypothesis test. Improvements 
on the tree structure by using online incremental pruning 
methods are rare. Guarded Incremental Pruning (GuIP) is 
proposed in Hapfelmeier et al. (2014) to improve tree-based 
models in the sense of overfitting and overly large structures 
avoidance. Sub-trees that do not provide a significant contri-
bution to the estimations are detected and removed.

Many other evolving methods proposed over the last 16 
years can be mentioned. Some important methods based 
on rule-based models are: evolving Takagi-Sugeno (eTS) 
(Angelov and Filev 2004; Precup et al. 2018), extended 
Takagi-Sugeno (xTS and +eTS) (Angelov and Zhou 
2006; Angelov 2010), FLEXible Fuzzy Inference System 
(FLEXFIS and FLEXFIS+) (Lughofer 2008; Lughofer et al. 
2011), Generalized Smart Evolving Fuzzy System (GS-EFS) 
(Lughofer et al. 2015), Interval-Based evolving Modeling 
(IBeM) (Leite et al. 2012, 2010), Fuzzy-set-Based evolv-
ing Modeling (FBeM) (Leite et al. 2012), evolving Fuzzy 
Model (eFuMo) (Dovžan et al. 2015), Sequential Adaptive 
Fuzzy Inference System (SAFIS) (Rong et al. 2011), Modi-
fied Sequential Adaptive Fuzzy Inference System (MSAFIS) 
(Rubio and Bouchachia 2017), and evoling Optimal Granu-
lar System (eOGS) (Leite et al. 2019). All of these methods 
can be employed to supervised and semi-supervised clas-
sification or prediction under simple considerations. Evolv-
ing Classifiers (eClass, eClass0, and eClass1) are given in 
(Angelov and Zhou 2008), and the AutoClassify model in 
Angelov (2012). Typicality and Eccentricity-based Data 
Analytics (TEDA) is discussed in Kangin et al. (2015).

Evolving neural systems are systems for which the compo-
nents shown in Figure 2 are neurons. Amongst neuro-fuzzy-
based systems are the following: Evolving Fuzzy Neural 

Network (EFuNN) (Kasabov 2007), Dynamic Evolving Neuro-
Fuzzy Inference System (DENFIS) (Kasabov and Song 2002), 
Self-Organizing Fuzzy Neural Networks (SOFNN) (Leng et al. 
2004), Generalized Adaptive Neuro-Fuzzy Inference Systems 
(GANFIS) (Azeem et al. 2003), evolving Granular Neural Net-
work (eGNN) (Leite et al. 2013; Leite 2019), Dynamic Fuzzy 
Neural Network (D-FNN) (Wu and Er 2000), Generalized 
Dynamic Fuzzy Neural Network (GD-FNN) (Wu et al. 2001), 
Neural Cube (NeuCube) (Kasabov 2014), online neuro-fuzzy 
ART-based model (NeuroFAST) (Tzafestas and Zikidis 2001), 
Evolving Self-Organizing Map (ESOM) (Kasabov 2007), Neu-
ral Gas (Fritzke 1994), Self-Organizing Fuzzy Modified Least 
Square network (SOFMLS) (Rubio 2009, 2017), Gath-Geva 
Evolving Neuro-Fuzzy Modeling (ENFM) (Soleimani-B et al. 
2010), PArsimonious Network based on Fuzzy Inference System 
(PANFIS) (Pratama et al. 2014), and Recurrent Interval-Valued 
Metacognitive Scaffolding Fuzzy Neural Network (RIVMcS-
FNN) (Pratama et al. 2015). The structure of neuro-fuzzy sys-
tems is recognized by the nature of the neurons, the network 
topology, and the number of neurons in the hidden layers.

The majority of the evolving neuro-fuzzy methods for 
regression is based on local radial-basis-function models 
(RBF models) or generalized constructions. The basic RBF 
models use Gaussian membership functions with equal 
spread, as in Wu et al. (2001). Other models employ ellip-
soidal functions and, therefore, allow membership functions 
to have different widths in different dimensions. Ellipsoidal 
approaches are given, for example, in GD-FNN (Wu et al. 
2001), and in SOFNN (Leng et al. 2004). In eGNN (Leite 
et al. 2013), hyper-rectangles and trapezoidal membership 
functions with different widths are used. Common to all 
frameworks is that neurons, connections, and local models 
are created, updated, merged, and deleted based on informa-
tion uncovered from numerical or uncertain data streams. 
Fuzzy rules can be extracted from neuro-fuzzy models at 
any time. Distinctive classes of evolving neural networks 
with fuzzy neurons and fuzzy procedures for data process-
ing include the neo-fuzzy neuron-based architectures of 
Silva et al. (2013) and Silva et al. (2015), and uninorm-based 
networks of Bordignon and Gomide (2014) and Leite et al. 
(2013). Recent developments on neo-fuzzy neurons and mod-
els are given in Bodyanskiy et al. (2016) and Bodyanskiy 
et al. (2018). A diversity of aggregation functions, such as 
T-norms, S-norms, averaging and compensatory operators, 
can be used in the body of a fuzzy neuron (Leite et al. 2013).

In general, the same evolving neuro-fuzzy methods origi-
nally proposed for regression, prediction, or control (which 
basically depends on the meaning and purpose of the out-
put variable), can also be used in pattern recognition and 
classification by eliminating the layer of the neural network 
that represents locally-valid functions, and ignoring the 
respective adaptation equations. Otherwise, a classification 
problem can be handled as a regression problem by simply 
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rounding the estimated output value to the nearest integer. 
Examples of evolving neuro-fuzzy networks used for clas-
sification include EFuNN, DENFIS, eGNN, and evolving 
TS neuro-fuzzy classifiers (Angelov 2010).

Ensemble learning has been discussed in evolving frame-
work. In ensemble learning, multiple base models or experts 
are trained to solve the same problem (Polikar 2006). The 
diversity of the base models can improve overall estimation 
accuracy and model robustness by combining individual con-
tributions. An ensemble of evolving eClass classifiers based 
on the concept of stacking is described in Iglesias et al. (2014). 
A fast deep learning network for handwriting recognition is 
proposed in Angelov and Gu (2017). The approach provides 
interpretable models. The network comprises an ensemble of 
zero-order evolving fuzzy rule-based models, which are built 
in parallel through an Autonomous Learning Multiple Model 
(ALMMo) method. Parsimonious ensemble (pENsemble) is 
proposed in Pratama et al. (2018) as an evolving variation of 
the dynamic weighted majority ensemble method by Kolter 
and Maloof (2007). An adaptive ensemble based on Extreme 
Learning Machines (ELMs) for one-step prediction is presented 
in Heeswijk et al. (2009). All-pairs evolving fuzzy models to 
handle online multiclass classification problems are proposed in 
Lughofer and Buchtala (2013). The approach can be viewed as 
an ensemble strategy that employs weighted voting based on a 
preference relation matrix to decide about the class of a sample. 
Three studies on ensembles of evolving predictors can be found 
in the literature (Bueno et al. 2015; Soares et al. 2018; Leite and 
Škrjanc 2019). In Bueno et al. (2015), an ensemble of Fuzzy-
set-Based evolving Models (FBeM) (Leite et al. 2012) is out-
lined. In (Leite and Škrjanc 2019), ordered weighted averaging 
(OWA) aggregation functions is used to merge the contribution 
of individual optimal evolving granular experts (eOGS) (Leite 
et al. 2019). In Soares et al. (2018), an ensemble of cloud and 
evolving fuzzy models were combined through the weighted 
arithmetic mean to give weather estimations.

Common to all frameworks is that evolution should 
change the structure of the model that describes the behav-
ior of the data stream, and update parameters associated to 
local models. As mentioned, the latter is generally handled 
by using some version of Weighted Recursive Least-Squares 
algorithm (Ljung 1999). The most challenging task, and 
also the basic ingredient of an evolving system, is therefore 
related to adding, deleting, splitting, and merging of clus-
ters, neurons, granules, leaves, or clouds (local models in 
general), in order to assure significant flexibility in case of 
changing situations, and representability of the essence and 
dynamic of the data.

Regarding the creation of a new local model, usually, 
learning starts from scratch. Local models are added to the 
global model on the fly in order to expand the knowledge 
inherent to the model to new regions of interest in the data 
space. If a sample fulfills the conditions for the addition 

of a local model, then it usually defines the center of the 
local model. A second parameter to be defined is the size 
of the local model, which depends on the geometry of the 
representative object, which is given by a distance measure.

Merging is necessary if local models significantly overlap 
with each other as a result of updating mechanisms. The act 
of merging is sometimes called information fusion, and is 
usually caused by consecutive samples belonging to the gap 
between two or more local models, which are used to be 
disjoint previously. Merging is justified to eliminate redun-
dancy. Splitting local models is defined for a finer structuring 
of the data space and model structure. Basically, an evolv-
ing algorithm should, in the case of regression and identi-
fication problems, accept a larger number of local models 
in the region of the data space in which the model output 
error (approximation or prediction error) is greater than the 
expected, or increases unexpectedly in a time interval.

Procedures to remove local models are convenient to be rid 
of elements that are no longer contributing to the model over-
all performance and understandability. Such procedures are of 
utmost importance in classification and pattern recognition to 
assure faster computation speed during data processing, and 
more compact rule bases and network topologies. In general, 
it happens that a local model is created in a part of the space 
where there are just a few representative samples. This may be 
justified by measurement errors or due to a change of the sys-
tem behavior so that the local model is no longer useful after 
a number of iterations. These local models can be removed 
because they do not help in the description of the data. None-
theless, care should be taken with seasonal behaviors since a 
local object may be reactivated in a further iteration. Moreover, 
in anomaly detection problems, unusual and idle representative 
objects may be more important than those highly operative 
local models, and therefore should not be removed.

Although creation, merging, splitting, and removing local 
models assure some kind of homogeneity and compactness of 
the overall structure, there are several issues to be addressed by 
the community to assure: (i) more elegant model architectures 
for high-performance computing; (ii) a more precise control 
over the flexibility and geometry of representative objects; (iii) 
higher robustness to outliers, missing data, and to transients after 
the creation of a local model; (iv) uncertainty handling, in the 
sense of capability of dealing with different types of granular 
data; (v) higher stability and better convergence (if convergence 
is an issue); and (vi) higher computational speed and practical 
usability for model updates in order to increase the applicabil-
ity and acceptability of evolving systems in real-world applica-
tions. Naturally, some of these more advanced issues have been 
addressed and investigated by the evolving systems community.

Because a significant part of the literature has been 
recently overviewed in Škrjanc et al. (2019), the next sub-
sections focus on a more detailed formulation and review of 
the following methods:
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–	 Multivariable Gaussian Evolving Participatory Learning 
(MG-ePL) (Lemos et al. 2011b);

–	 Evolving Cauchy Possibilistic Clustering (eCauchy) 
(Škrjanc et al. 2018);

–	 Evolving Granular Neural Network (eGNN) (Leite et al. 
2013); and

–	 Evolving Fuzzy Linear Regression Tree (eFLRT) (Lemos 
et al. 2011a);

as examples of evolving frameworks of the distinct catego-
ries, as shown in Figure 1.

3 � Formulation and algorithms of basic 
evolving frameworks

This section presents the formulation of the methods MG-
ePL (Lemos et al. 2011b), eCauchy (Škrjanc et al. 2018), 
eGNN (Leite et al. 2013), and eFLRT (Lemos et al. 2011a), 
and summarizes the corresponding algorithms.

3.1 � Multivariable Evolving Participatory Learning 
(MG‑ePL)

A functional Takagi-Sugeno fuzzy model is composed by 
rules of the form:

where Ri is the i-th fuzzy rule, for i = 1,… , gk ; gk is the 
number of rules at step k; xj , j = 1,… ,m , is an input vari-
able; Aij are antecedent fuzzy sets; yi is the local model out-
put; and aij∀i, j are parameters associated to the consequent 
function of the i-th local model.

If the antecedent fuzzy sets are Gaussian, then:

Ri ∶ If x1 is Ai1 and … and xm is Aim then

yi = ai0 + ai1x1 +⋯ + aimxm

(1)�ij = exp
(
−
4

r2
||xj − x∗

ij
||2

)

where r is the spread, ||.|| is the Euclidean norm, and x∗
i
 is the 

focal point, then the firing degree of a rule is computed using 
the product T-norm (Pedrycz and Gomide 2007):

The overall model output is the weighted average of the local 
models:

where �i = �i∕
∑gk

j=1
�j is the normalized firing degree.

Unsupervised potential-based recursive clustering algo-
rithms can be used to determine the fuzzy rules of the model. 
Clustering can be done in the input-output space in which 
each of the data points is given by z = [xT y]T . The exist-
ing clusters can be projected on the input-variables axes for 
interpretability purpose, see Figure 3.

The potential of a data sample zk is a measure of its dis-
tance to all other data samples:

where k = 2, 3,… is the index of processed data samples. The 
potential function finds data samples that can be considered 
centers of regions with higher data density, as shown in Fig. 4.

Recursive computation of potential, as developed in 
(Angelov and Filev 2004), is given as

where z∗
l
 is the center of the cluster l ( 1 × m + 1 ); and 

d
k(k−1)

j
= zk

j
− zk−1

j
.

Coefficients of rule consequents are updated using the 
Recursive Weighted Least-Squares algorithm (Young 1984). 
Algorithm 1 summarizes the learning procedure of the 
evolving functional fuzzy model.

(2)�i = �i1(x1) × �i2(x2) ×⋯ × �im(xm);

(3)y =

gk∑
i=1

�iyi

(4)P(zk) =
1

k − 1

k−1∑
i=1

exp
(
−r||zk − zi||2)

(5)Pk(z∗
l
) =

(k − 1)Pk−1(z∗
l
)

k − 2 + Pk−1(z∗
l
) + Pk−1(z∗

l
)
∑m+1

j=1
d
k(k−1)

j

Algorithm 1Algorithm 1 Evolving Functional Learning AlgorithmEvolving Functional Learning Algorithm
1:1: Compute the new data sample potentialCompute the new data sample potential PP ((zzkk))
2:2: forfor jj = 1= 1, ..., g, ..., gkk dodo
3:3: Compute the centerCompute the center ccjj potentialpotential
4:4: end forend for
5:5: ifif PP ((zzkk)) > P> P ((ccjj)) ∀∀jj thenthen
6:6: ifif zzkk is close enough to some clusteris close enough to some cluster jj thenthen
7:7: zzkk replacesreplaces ccjj as the center of clusteras the center of cluster jj
8:8: elseelse
9:9: A new cluster is created centered inA new cluster is created centered in zzkk

10:10: end ifend if
11:11: elseelse
12:12: Update the consequent parameters of the closest clusterUpdate the consequent parameters of the closest cluster
13:13: end ifend if
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Participatory learning assumes that the current knowl-
edge about the system is part of the learning process itself 
and influences the way in which new observations are used 
in learning. It gives an automatic procedure to decide if a 
new observation lying far, outside the current cluster struc-
ture, is either a new cluster to be added to the model, or an 
outlier to be discarded. The cluster structure is updated using 
a compatibility measure �k

i
∈ [0, 1] , and an arousal index, 

ak
i
∈ [0, 1] . The compatibility measure computes how much 

an observation is compatible with the current cluster struc-
ture, while the arousal index acts as a critique to reveal when 
the current structure should be revised, given new input data.

Cluster centers are updated as follows:

where Gk
i
 is defined as:

and � ∈ [0, 1] is the learning rate.
The arousal index gives a monitoring mechanism to 

observe the compatibility values. It is interpreted as the 
complement of the compatibility on the current knowledge. 
Figure 5 shows the participatory clustering procedure. The 
arousal index is computed using a sliding window assembled 
by the last w observations. It is viewed as the probability 
of observing less than a given number of violations of the 
compatibility threshold in a sequence of w observations. 
Algorithm 2 stands for the Gaussian Participatory evolving 
procedure.

(6)vk+1
i

= vk
i
+ Gk

i
(xk − vk

i
)

(7)Gk
i
= �(�k

i
)1−a

k
i

Fig. 3   Projection of fuzzy sets 
generated by clustering

Fig. 4   Potential of data samples

An alternative evolving fuzzy model is the evolving mul-
tivariable Gaussian developed in Lemos et al. (2011b). The 
model uses a clustering algorithm derived from the par-
ticipatory learning paradigm (Yager 1990). Different from 
previous neural and rule-based models (Kasabov and Song 
2002; Lughofer 2008; Angelov and Filev 2004), the cluster-
ing procedure assumes that input variables may interact, and 
trigger ellipsoidal clusters whose axes are not necessarily 
parallel. Coefficients of the rule consequents, however, are 
also updated using Weighted Recursive Least Squares. The 
evolving multivariable Gaussian model avoids information 
loss (Abonyi et al. 2002).
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Algorithm 2 Gaussian Participatory Evolving Clustering
1: Compute ρi and ai for all clusters
2: Select the cluster with the highest compatibility (j)
3: if ρi < Tρ ∀i and aj > Ta then
4: Create a new cluster
5: else
6: Update the parameters of cluster j
7: end if
8: Select the updated/created cluster (idx)
9: for all Clusters (i) do
10: if Compatibility between ci and cidx is greater than Tρ then
11: Merge redundant clusters
12: end if
13: end for

3.2 � Evolving Cauchy possibilistic clustering 
algorithm—eCauchy clustering

In this approach, proposed in Škrjanc et al. (2018), Škrjanc 
et al. (2019), Cauchy density is used to calculate mem-
bership of the data sample. The well-known possibilistic 
c-means clustering (PCM) is a special example of the pro-
posed eCauchy algorithm. This approach can overcome the 
problems of modeling nonlinear data flows in highly noisy 
environments with frequent occurrence of outliers. The algo-
rithm can be modified in different ways to solve different 

Fig. 5   Participatory clustering

Like its predecessors, the evolving multivariable Gauss-
ian model is formed by functional fuzzy rules of the form:

where Ri is the ith fuzzy rule, for i = 1,… , ck ; ck is the num-
ber of rules, and �k

io
 and �k

ij
 are the consequent parameters at 

step k. Consequent parameters are updated using the 
Weighted Recursive Least Squares algorithm (Ljung 1999). 
The main steps of the learning algorithm are summarized in 
Algorithm 3.

(8)Ri ∶ If xk is Hi then yk
i
= �k

io
+

m∑
j=1

�k
ij
xk
i

Algorithm 3 Evolving Gaussian Multivariable Algorithm
1: Compute model output (estimation)
2: Update the cluster structure
3: if Cluster was created then
4: Create a new rule
5: end if
6: if Cluster was modified then
7: Update antecedent parameters of the respective rule using cluster parameters
8: Update consequent parameters of the respective rule using weighted least squares
9: end if
10: if Two cluster were merged then
11: Merge corresponding rules
12: end if
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where Tj

A
=

(Mj−1)

Mj
trace (Aj� j) and

where �j defines the center of the j-th cluster of dimension 
m × 1 , and the lower and upper index at zj

i
 define the i-th 

sample in the j-th cluster. The notation of cluster center can 
also be written as �j

Mj
 to explicitly express that the j-th clus-

ter consists of Mj samples. � j denotes the covariance matrix, 
of dimension m × m , of the j-th cluster. The covariance 
matrix is calculated as:

The density, given by Eq. 13, is in its absolute form. The 
density value may be higher than one.

When the internal matrix norm is equal to the inverse 
covariance matrix (� j)−1 of the corresponding dataset, with 
data samples Mj , then the distance is called Mahalanobis 
distance. By introducing Eq. 11 with internal norm as the 
inverse of the covariance matrix in Eq. 9, we get a Cauchy-
density relation based on the Mahalanobis distance (Blažič 
et al. 2014):

where q is the rank of the covariance matrix.
The advantage of using the Mahalanobis distance is that 

it describes a hyper-ellipsoid-shaped cluster. The size and 
shape of the hyper-ellipsoid depends on the covariance of 
the data within a cluster.

3.2.2 � Recursive computation of Cauchy density

In an evolving algorithm, density must be calculated recur-
sively. The proposed approach fully assigns the observed 
sample to the cluster with the highest density if it exceeds 
a predetermined minimum value. If the maximum sam-
ple density is lower than the threshold, then the sample 
is treated as an outlier (Škrjanc and Dovžan 2015) or 
as an initial sample of a new cluster (depending on the 
application).

With the new sample in the cluster z(k), the number of 
samples increases, the mean and the cluster covariance 
matrix are updated in a recursive way. The update is per-
formed in the following steps. First, calculate the difference 
between the current sample and the current mean:

(14)�j =
1

Mj

Mj∑
i=1

z
j

i
,

(15)� j

Mj
=

1

Mj − 1

Mj∑
i=1

(z
j

i
− �j

Mj
)(z

j

i
− �j

Mj
)T

(16)� j
k
=

1

1 +
1

�2
l

(z(k) − �j)T (� j)−1(z(k) − �j) +
1

�2
l

(Mj−1)

Mj
q
,

(17)e
j

Mj
(k) = z(k) − �j

Mj
.

classification problems, and be used as a pre-treatment to 
solve regression problems. Due to the nature of the algorithm 
and easy computation, it is also suitable for solving big-data 
problems. The eCauchy algorithm described below needs 
only a few initial parameters, such as minimum and maxi-
mum density. The algorithm gradually changes the structure 
of the model based on the data stream, more precisely devel-
oping the structure of the model during the operation by add-
ing, merging, splitting, and removing clusters. This approach 
allows the identification of very different clusters in terms of 
size and shape, and is insensitive to outliers and noise. The 
algorithm is explained in the following subsections.

3.2.1 � Cauchy density for data stream

The Cauchy density of sample k for cluster j is defined as � j
k
 . 

Density is generally defined for data as the sum of distances 
between the current sample z(k), of dimension m × 1 , and all 
previous samples belonging to a particular cluster (Angelov 
and Yager 2011; Blažič et al. 2014):

where �l is a normalization constant that expands or narrows 
membership functions, dj

ki
 denotes the square of the Euclid-

ean distance between the current data sample z(k) and the 
i-th sample from the j-th cluster zj

i
 as follows:

and Mj indicates the number of samples in cluster j.
The generalization of the basic density measurement is 

introduced by positively defined internal matrix norm Aj 
with dimensions m × m as follows:

Cauchy density becomes relative in this sense because the 
distances are weighed in different directions, with different 
weights. The equation for calculating the Cauchy density is 
then (Blažič et al. 2015):

To use Cauchy density for on-line identification, the density 
equation (Eq. 12) must be converted to its recursive form 
Blažič et al. (2015):

(9)
� j
k
=

1

1 +
1

�2
l

∑Mj

i=1
d
j

ki

Mj

j = 1,… , c,

(10)d
j

ki
= (z(k) − z

j

i
)T (z(k) − z

j

i
)

(11)d
j

ki
= (z(k) − z

j

i
)TAj(z(k) − z

j

i
)

(12)
� j
k
=

1

1 +
1

�2
l

∑Mj

i=1
(z(k)−z

j

i
)TAj(z(k)−z

j

i
)

Mj

(13)� j
k
=

1

1 +
1

�2
l

(z(k) − �j)TAj(z(k) − �j) +
1

�2
l

T
j

A

,
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The centers of cluster is updated as follows

and the states of the non-normalized covariance matrix are 
adapted as:

The covariance matrix is then obtained as

The complete evolving Gaussian clustering algorithm is 
shown in Alg. 4.

3.2.3 � Evolving Cauchy possibilistic clustering

The problems of data coming from the stream require evolv-
ing mechanisms such as adding, merging, and deleting 

(18)�j

Mj+1
= �j

Mj
+

1

Mj + 1
e
j

Mj
(k).

(19)S
j

Mj+1
= S

j

Mj
+ e

j

Mj
(k)(z(k) − ���j

Mj+1
)T

(20)� j

Mj+1
=

1

Mj
S
j

Mj+1
.

clusters. A brief description of the underlying mechanisms 
within the eCauchy framework is given next.

3.2.4 � Adding and removing clusters

For classification problems, the most common method is to 
use the direct adding method. Each sample is either added 
to one of the existing clusters, or a new cluster is initialized. 
In eCauchy, a new cluster is added if

where �max is a user-defined maximum-density threshold. 
By adding a new cluster, the number of clusters increases, 
c = c + 1 , and the number of elements in the cluster is ini-
tialized to Mj = 1 . The center and covariance of the cluster 
matrix are initialized to �j = z(k) and � j = 0 , respectively.

(21)max
j

𝛾 j
k
< 𝛤max

Algorithm 4 Algorithm of Evolving Cauchy Clustering.

1: Choice of Γmax, σ2
l

2: Initialization:
3: c ← 1
4: M1 ← 1
5: µ1

M1
← z(1)

6: S1 ← 0
7: repeat k ← k + 1, waiting for new sample z(k)
8: Calculate densities γi

k, i = 1, ..., c

9: Choice of maximal density j = argmaxi γ
j
k

10: if γj
k ≤ Γmax

11: Add and initialize new cluster
12: c ← c+ 1
13: j = c
14: Mj ← 1
15: µj

Mj
← z(k)

16: Sj ← 0
17: else
18: Update cluster j
19: Mj ← Mj + 1
20: ej(k) ← z(k)− µj

21: µj

Mj+1 = µj

Mj + 1
Mj+1 e

j

Mj (k)

22: Sj

Mj+1 = Sj

Mj + ej
Mj (k)(z(k)− µj

Mj+1)
T

23: Σj
Mj+1 = 1

Mj S
j
Mj+1

24: end
25: until k > N
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The purpose of the cluster removal mechanism is to detect 
clusters that have been added based on the outliers. The out-
liers often satisfy the adding condition. Such clusters are 
not valid. Since they were added based on outliers, they are 
unlikely to collect a noticeable number of samples over a 
predefined time period. Therefore, if the number of cluster 
samples is less than a given threshold, Mmin,

then the cluster is deleted (Dovžan et al. 2015; Angelov 
2010).

The removing mechanism works well if the data is dis-
tributed and come to the learning algorithm more or less 
evenly from different classes or clusters. If the dataset is 
unbalanced, the removing mechanism can delete actual clus-
ters, which may deteriorate the performance of the classi-
fication system. In other words, a sequence of samples of 
other classes (unbalanced case) may provide evidence that 
a specific inactive cluster should be deleted since it is use-
less in the current environment. Therefore, unbalanced data 
streams may require an additional approach to avoid the 
deletion of clusters that represent rare or seasonal events. 
However, outliers are generally rare events. In this case, 
inactive clusters, that is, clusters that were created based on 
outliers, should instead be deleted, which is a contradiction. 
This is an open issue in the evolving systems literature.

3.2.5 � Merging and splitting clusters

As mentioned, adding clusters is based on the distance 
between the current sample and existing clusters. The dis-
tance or threshold to add a local model usually depends on 
the covariance of the data array around the center of the 
cluster. In some cases, especially when the samples arrive 
randomly from different classes and are very scattered, the 
learning algorithm usually generates more clusters than the 
necessary. A merging mechanism can be used to reduce the 
number of such clusters. Merging is a procedure that com-
bines similar clusters. This reduces the number of clusters 
and simplifies the overall model structure. Cluster eligibility 
is usually determined by the Mahalanobis distance between 
two cluster centers; correlation between firing rates; or, in 
the case of regression models, based on information of the 
local models themselves (Dovžan et al. 2015). An innovative 
approach to merging is given in Škrjanc (2019).

The cluster splitting mechanism is designed for fine par-
titioning of the problem space. In the case of prediction 
problems, the algorithm splits clusters with large prediction 
errors. In the case of a classification problem, the algorithm 
splits clusters containing a certain number of misclassified 
samples. In this way, a more accurate partition of the prob-
lem space is obtained, and typically the model’s accuracy 

(22)Mj < Mmin

increases (Dovžan et al. 2015). A detailed description of the 
cluster division is given in Lughofer et al. (2018).

3.3 � Evolving granular neural network (eGNN)

Evolving Granular Neural Networks (eGNN) (Leite 2012; 
Leite et al. 2013) encode a set of fuzzy rules in their struc-
tures. Therefore, neural processing conforms with that of a 
fuzzy inference system. The network is supplied with fuzzy 
neurons, which perform aggregation functions (Beliakov 
et al. 2007); and with an incremental algorithm for learning 
from a data stream, which can be numerical or fuzzy. Fuzzy 
granules and rules are created gradually according to new 
information discovered from the numerical or fuzzy data. 
eGNN provides: (i) computational tractability and scalability 
with the number of samples and attributes; (ii) improved 
explainability and interpretability by means of granular local 
models and linguistic rules; and (iii) reduced cost of data 
processing in relation to non-evolving methods. eGNN has 
shown to be general, and able to outperform other evolv-
ing methods and models, including evolving classifiers and 
predictors (Leite et al. 2010; Leite 2012; Leite et al. 2013; 
Leite 2019).

Let x = (x1,… , xn) be an input vector and y be its cor-
responding output. Assume that the data stream (x, y)[h] , 
h = 1,… , are samples measured from an unknown function 
f. Inputs xj and output y can be symmetric fuzzy data in 
general—being interval and numerical data particular cases.

Fig. 6   eGNN topology and numerical output
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Figure 6 depicts a four-layer eGNN structure. The first 
layer inputs samples x[h] , one at a time, to the network. The 
granular layer consists of a collection of fuzzy sets Gi

j
 , 

j = 1,… , n ; i = 1,… , c , stratified from the input data. Fuzzy 
sets Gi

j
 , i = 1,… , c , form a fuzzy partition of the j-th input 

domain, Xj . Similarly, fuzzy sets � i , i = 1,… , c , give a fuzzy 
par ti t ion of the output domain Y .  A granule 
� i = Gi

1
×⋯ × Gi

n
× � i is a fuzzy relation, a multidimen-

sional fuzzy set in X1 ×⋯ × Xn × Y  . Thus, granule � i has 
membership function � i(x, y) = min{Gi

1
(x1),… ,Gi

n
(xn),�

i(y)} in 
X1 ×⋯ × Xn × Y . Granule � i is denoted by � i = (Gi,� i) with 
Gi = (Gi

1
,… ,Gi

n
) , for short. Granule � i has a companion 

local function pi . Real-valued affine functions:

are generally used. Parameters ai
0
 and ai

j
 are real values; x̂j is 

the midpoint of xj = (x
j
, x

j
, xj, xj) , computed as

Notice that xj = (x
j
, x

j
, xj, xj) is a trapezoidal membership 

function (a fuzzy datum), canonically represented by four 
parameters listed in ascending order. The intermediate 
parameters form the core, and the boundary parameters form 
its support.

Similarity degrees x̃i = (̃xi
1
,… , x̃i

n
) , see Fig.  6, is the 

result of matching between the input x = (x1,… , xn) and 
fuzzy sets of Gi = (Gi

1
,… ,Gi

n
) . As data and granules can 

be trapezoidal fuzzy objects, a useful similarity measure to 
quantify how the input data are related to the current knowl-
edge is

This measure returns x̃i
j
= 1 for identical trapezoids, and 

reduces linearly as any numerator term increases. Non-over-
lapped trapezoids are considered dissimilar.

The aggregation layer is composed of fuzzy neurons Ai , 
i = 1,… , c , that combine the values from different inputs. 
In other words, a fuzzy neuron Ai combines weighted simi-
larity degrees (̃xi

1
wi
1
,… , x̃i

n
wi
n
) into a single value oi . Notice 

that x̃i
j
 is the result of matching between the j-th input attrib-

ute and the j-th trapezoidal membership function of the i-th 
granule, Gi

j
 , as in (25). An aggregation neuron, Ai , produces 

a diversity of nonlinear mappings between neuron inputs and 
output depending on the choice of weights wi

j
 , j = 1,… , n , 

(23)pi(x̂1,… , x̂n) = ŷi = ai
0
+

n∑
j=1

ai
j
x̂j,

(24)mp(xj) = x̂j =
x
j
+ xj

2
.

(25)x̃i
j
=

⎧⎪⎨⎪⎩

1 −

⎛
⎜⎜⎝

�gi
j

−x
j
�+�gi

j
−x

j
�+�gi

j
−xj�+�g

i

j
−xj�

4(max(g
i

j
,xj)−min(gi

j

,x
j
))

⎞
⎟⎟⎠

if xj ∩ Gi
j
≠ �

0 otherwise.

and aggregation function, e.g., triangular norms and 
conorms, null and uninorms, averaging and compensatory 
operators (Leite 2012; Leite et al. 2013).

The output layer processes weighted values 
(o1ŷ1𝛿1,… , ocŷc𝛿c) using a fuzzy neuron Af  to produce a 
numerical output ŷ[h].

An m-output eGNN needs a vector of local functions 
(pi

1
,… , pi

m
) , m output layer neurons (Af

1
,… ,A

f
m) , and m out-

puts (ŷ1,… , ŷm) . The network output ŷ , as shown in Figure 6, 
is a numerical approximation of f, independently if the input 
data are numerical or fuzzy.

Granular approximation of the function f at step H is 
given by a set of granules � i , i = 1,… , c , such that:

The granular approximation is constructed by granulating 
both, input data x[h] into fuzzy sets of Gi , and output data y[h] 
into fuzzy sets � i . The granular approximation is the convex 
hull of output fuzzy sets � i∗ , where i∗ are indices of active 
granules, that is, those for which oi > 0 . This guarantees that 
the numerical approximation ŷ[h] is enclosed by the granular 
approximation. The convex hull of trapezoidal fuzzy sets 
� 1,… ,� i,… ,� c , with � i = (ui, ui, u

i
, u

i

) , is a trapezoidal 
fuzzy set whose representation is

(26)(x, y)[h] ⊆

c⋃
i=1

𝛾 i, h = 1,… ,H.

Fig. 7   eGNN numerical and granular approximation of function f 
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Particularly, the trapezoid (ui∗ , ui∗ , ui
∗

, u
i∗

) , which results 
from ch(� i∗ ) , i∗ = {i ∶ oi > 0, i = 1,… , c} , is a granular 
approximation of y. Note that granular approximation at step 
h does not depend on the availability of y[h] because oi is 
obtained from x[h] (see Figure 6). Only the collection of out-
put fuzzy sets � i is required.

Figure 7 shows the numerical and granular approxima-
tion, p and 

⋃c

i=1
� i , of a function f. In Figure 7(a), a numeri-

cal input x[h1] and a granular input x[h2] produce numerical 
outputs ŷ[h1] and ŷ[h2] using p. In Figure 7(b), the granular 
input x[h] activates the fuzzy sets of G2 and G3 . Therefore, the 
granular output is ch(� 2,� 3) . Notice that y[h] ⊂ ch(� 2,� 3).

eGNN develops simultaneously more precise (functional) 
and more interpretable (linguistic) fuzzy models. Accuracy 
and interpretability require tradeoffs and one usually excels 
over the other. Under assumption on specific weights and 
neurons types, fuzzy rules extracted from eGNN are of the 
type:

(27)
ch(� 1,… ,� c) = (min(u1,… , uc),min(u1,… , uc),

max(u
1
,… , u

c
),max(u

1

,… , u
c

)).

Learning assumes that no granules and neurons exist a 
priori. Granules, neurons and connections can be added, 
updated, removed, and combined. Single pass over the data 
enables eGNN to address the issues of unbounded datasets 
and scalability. Fuzzy rules encoded in the eGNN structure 
aims to approximate and to enclose a target function. In sum-
mary, fuzzy rules and the network topology are obtained 
and updated incrementally to a new scenario from the Algo-
rithm 5. See (Leite et al. 2013; Leite 2019) for details.

3.4 � Evolving fuzzy linear regression tree (eFLRT)

Fuzzy regression trees replace binary splitting decisions at 
each tree node using pairs of membership functions, simi-
larly as in fuzzy decision trees (Janikow 1998), and divide 
the input space in overlapping regions. Figure 8 shows an 
example of a regression tree.

There are several algorithms to grow linear regression 
trees and classic regression trees using incremental learn-
ing (Potts 2004 [38] Ikonomovska et al. 2009). While most 
evolving fuzzy-modeling methods use spatial information 
of the data space, the evolving fuzzy tree model granulates 
the data space selecting split points that improves the good-
ness of fit of the resulting models. Fuzzy regression trees 
replace splitting decision tests by two membership functions 
to mean less than and greater than. All branches of the tree 
fire in a degree. This results in an overlapping partition of 
the input space and a regression model based on a weighted 

Ri ∶ IF (x1 is G
i
1
) AND … AND (xn is G

i
n
)

THEN (ŷ is 𝛤 i)
���
linguistic

AND ŷ = pi(x1,… , xn)
�������������������

functional

A

B

C

J

E

F

G

L

H I

Fig. 8   Example regression tree
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sum of local models. For instance, sigmoidal membership 
functions can be used in each internal node,

where c is the center, and � is the spread. Figure 9 depicts 
membership functions describing less than 5 and greater 
than 5 for � = −0.5 (less than) and � = 0.5 (greater than).

(28)�(x) =
1

1 + exp−
1

�
(x − c)

Figure  10 shows the partition of the input space 
( x1 ∈ [0, 6] and x2 ∈ [0, 6] ) produced when the splitting 
tests of the tree illustrated in Figure 8 are replaced by pairs 
of sigmoidal membership functions, with c as the original 
split points of the figure, and |�| = 0.2 for all internal nodes.

The tree computes the output as the weighted average 
of the output of all models assigned to the leaf nodes as 
follows:

where l is the number of leaves, and wi is:

where t is a t-norm, o is the number of internal nodes reached 
from the root to the leaf i, and �j is one of the sigmoidal 
membership functions associated with internal node j.

Learning of evolving fuzzy regression trees is an incremen-
tal process that starts with a single-leaf tree and its correspond-
ing regression model. The tree evolves as data are available 
by replacing leaves by subtrees using a recursive statistical 
model selection test. Parameters of the regression models 
of the leaves are updated using the Weighted Least-Squares 
algorithm. Algorithm 6 summarizes the learning algorithm. A 
detailed description of all evolving models and their applica-
tion in distinct domains can be found in Lemos et al. (2013).

(29)ŷ =

∑l

i=1
yiwi∑l

i=1
wi

(30)wi = �1(x) t �2(x) t … t �o(x) = To
j=1

�j(x)

Fig. 10   Input space partition produced by a fuzzy regression tree

Algorithm 5 Evolving Granular Neural Network
1: Select a type of neuron for the aggregation and output layers
2: for all inputs x[h] do
3: Compute compatibility degrees (o1, ..., oc)
4: Aggregate values using Af to provide numerical approximation ŷ[h]

5: Compute convex hull of Γ i∗ , i∗ = {i, oi > 0}
6: Find granular approximation (ui∗ , ui∗ , ui∗ , u

i∗ )
7: Compute output error ε[h] = y[h] − ŷ[h]

8: if x[h] is not within granules’ expansion regions Ei∀i then
9: Create granule γc+1, neuron Ac+1, and connections
10: else
11: Update the most active granule γi, i = arg max(o1, ..., oc)
12: Adapt local function parameters aij using Recursive Least Squares
13: Adapt weights wi

j∀j, i
14: end if
15: if h = αhr, α = 1, 2, ... then
16: Combine granules when feasible
17: Update model granularity ρ
18: Adapt weights δi∀i
19: Prune inactive granules and connections
20: end if
21: end for
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Algorithm 6 Evolving Fuzzy Regression Tree
1: Compute the output and membership value of all leaves
2: Update the linear models
3: Select the leaf with the highest membership value
4: for all inputs (m) do
5: for all candidate splits (k) do
6: Estimate the output replacing the selected leaf with the candidate split
7: Compute the p-value of the model selection test for the candidate split
8: end for
9: end for
10: Select the candidate split associated with the minimum p-value
11: if p-value < α

k×m
then

12: Replace the selected leaf by the candidate split
13: end if

may cause instability of Lyapunov-stable closed-loop control 
systems, and loss of memory in evolving intelligent models.

Characterization, design of experimental setups, and 
construction of workflows to guide development, perfor-
mance evaluation, testing, validation, and comparison of 
algorithms in non-stationary environments require further 
elaboration. The evolution of rough-set models, Dempster-
Shafer models, and aggregation functions are also impor-
tant topics to expand the current scope of the area. T and 
S-norms, Uni and null-norms, and averaging functions are 
generally chosen a priori and kept fixed during model evo-
lution. Approaches to switch aggregation operators based 
on properties of the data, and to update associated operator 
parameters are still to be undertaken.

Evolving systems in parallel high-performance comput-
ing frameworks will be explored in the next years. The rule-
base modular and granular structure of fuzzy models is an 
interesting aspect to be exploited in high-frequency stream 
applications. Moreover, a variety of particularities of dif-
ferent applications and evolution aspects in hardware using 
low resources (aiming at smarter evolving models) are still 
to be addressed.
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